Wrapper based Feature Selection for Virtual Colonoscopy Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification { a Probabilistic Wrapper

Feature selection is deened as a problem to nd a minimum set of M features for an inductive algorithm to achieve the highest predictive accuracy from the data described by the original N features where M N. A probabilistic wrapper model is proposed as another method besides the exhaustive search and the heuristic approach. The aim of this model is to avoid local minima and exhaustive search. Th...

متن کامل

Wrapper Based Feature Selection for Ct Image

Diagnostic imaging is invaluable. Magnetic Resonance Imaging (MRI), digital mammography, Computed Tomography (CT), and others ensure effective noninvasive mapping of a subject’s anatomy, and increased normal and diseased anatomy knowledge for medical research in addition to being a critical component in diagnosis and treatment. In this work various feature selection algorithms are investigated ...

متن کامل

Wrapper for Ranking Feature Selection

We propose a new feature selection criterion not based on calculated measures between attributes, or complex and costly distance calculations. Applying a wrapper to the output of a new attribute ranking method, we obtain a minimum subset with the same error rate as the original data. The experiments were compared to two other algorithms with the same results, but with a very short computation t...

متن کامل

Wrapper Feature Selection

INTRODUCTION It is well known that the performance of most data mining algorithms can be deteriorated by features that do not add any value to learning tasks. Feature selection can be used to limit the effects of such features by seeking only the relevant subset from the original features (de Souza et al., 2006). This subset of the relevant features is discovered by removing those that are cons...

متن کامل

A Wrapper Feature Selection Approach to Classification with Missing Data

Many industrial and real-world datasets suffer from an unavoidable problem of missing values. The problem of missing data has been addressed extensively in the statistical analysis literature, and also, but to a lesser extent in the classification literature. The ability to deal with missing data is an essential requirement for classification because inadequate treatment of missing data may lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indian Journal of Science and Technology

سال: 2016

ISSN: 0974-5645,0974-6846

DOI: 10.17485/ijst/2016/v9is1/107929